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Abstract

The Fokker–Planck equation is solved by describing the evolution of a 3D fibre orientation state along a planar contraction. A con-
stant value of the effective rotational diffusion coefficient was determined for four different turbulent flow cases in planar contractions,
reported experimentally in the literature. Two hypotheses for the non-dimensional rotational diffusivity are presented, each based on two
different turbulent time scales, i.e. the Kolmogorov time scales and the time scale associated with large energy bearing eddies. These
hypotheses are dependent on either the Reynolds number, based on the Taylor micro-scale, and/or a non-dimensional fibre length.
The hypothesis, based on the assumption of long fibres, Lf=gJ 25, compared to the Kolmogorov scale and in the limit of large Rek seems
to capture the basic trends presented in the literature. This hypothesis has also the feature of predicting effects of varying fibre length
within certain limits. Accordingly, by modeling the variation of turbulent quantities along the contraction in a CFD analysis, local values
of rotational diffusivity can be evaluated with the mentioned hypothesis, based on either Kolmogorov time scale or Eulerian integral time
scale.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Many industrial processes and applications utilize the
benefits of turbulence and an accelerating flow for certain
quality achievements. In, for example, the paper manufac-
turing process, the introduction of turbulence is proven to
break agglomerates of cellulose fibres, producing a paper
sheet determined by the local basis weight variation, or
fibre/agglomerates distribution, up to a wavelength of
40 mm. This in turn ensures good mechanical properties
of the paper sheet, e.g. Andersson and Steen (1962) and
Norman and Söderberg (2001). A typical length of cellu-
lose fibre is between 1 and 3 mm, depending on the origin
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of and the type of tree. In the so-called forming section of a
paper machine, the dilute fibre suspension is accelerated by
passing through a contracting planar channel, i.e. the head-
box, and evenly spreads out as a jet, at speeds up to 35 m/s,
onto a moving fabric or into a gap between two moving
fabrics. Many of the final paper properties are based upon
the state of the fibre suspension in the early stage of the
process, e.g. Norman and Söderberg (2001). As the jet hits
the moving fabric, the state, or the history, of this jet is
essential. The jet is formed in the contraction called a head-
box. The headbox ensures that the jet exits the headbox
within a specific state, depending on the type of paper being
produced. The interaction between this jet and the moving
fabric(s) is a main feature for achieving good formation
and fibre orientation. For example, in high speed printing
it is desirable to have high tensile strength in the direction
of the paper feed. For other applications, such as sack
paper, a uniform distribution and orientation distribution
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Fig. 1. Schematic view of the planar contraction with the definition of
coordinate system and fibre orientation angles.
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of the fibres is required. The state of the jet can be modified
in various ways. One way is to vary the contraction ratio,
i.e. the ratio between the inlet height and the outlet height
of the contracting channel. Increasing the contraction ratio
is known to significantly increase the fibre alignment, e.g.
Ullmar (1997, 1998) and Zhang (2001). This can essentially
change the final paper properties, e.g. Nordström and Nor-
man (1994) and Söderberg and Kiviranta (2003). A study
made by Olson and Kerekes (1998) and Olson (2001)
imposed fibre motion, both translational and rotational,
in fluid flow. The flow is described by a stochastic series
of independent Fourier modes, reproduced by the Kraich-
nan energy spectrum, which represents low Reynolds num-
ber turbulence. Fibres are furthermore described as rigid,
thin and inertialess. Olson and Kerekes (1998) and Olson
(2001) concluded that the dispersion coefficients decrease
as the ratio of fibre length to Lagrangian integral length
scale of the turbulence decrease. The work by Shin and
Koch (2005), hereafter referred to as S&K, uses DNS sim-
ulation of fully developed isotropic turbulence for studying
the translational and rotational motions of fibre with the
slender-body theory, e.g. Batchelor, 1970 and Cox (1970).
In the study by S&K, the measure of rotational motion is
described by the variance of the fibre rotation rate. In the
range of Reynolds number considered by S&K, the rotary
dispersion coefficient is influenced by the scales of turbu-
lence, i.e. between the Kolmogorov and the Integral time
scales. Earlier modelling studies have neglected the influ-
ence of turbulence in an accelerated fluid flow, e.g. Akbar
and Altan (1992), Olson (2002) and Zhang (2001). Later,
the rotational dispersion coefficient has been related to tur-
bulence quantities, cf. Krushkal and Gallily (1988), Olson
and Kerekes (1998) and Olson (2001). Recent experimental
and computational work by Parsheh et al. (2005, 2006),
correlated the rotational dispersion coefficient with turbu-
lent properties on the centreline of a plane contraction.
The rotational dispersion coefficient, principally based on
the turbulence intensity, is model fitted to the evolution
of the fourth moment of the fibre orientation in the
contraction.

In this study, assuming an inertialess particle following a
central streamline, only the rotational dispersion is taken
into consideration. The steady-state Fokker–Planck equa-
tion is solved by describing the evolution of a 3D fibre ori-
entation state along a planar contraction, e.g. Advani and
Tucker (1987). This has earlier been assumed as planar
problems in the studies by, e.g. Hyensjö et al. (2007), Olson
et al. (2004) and Parsheh et al. (2005). The four experimen-
tal flow cases compared in this paper, differentiated by the
level of turbulent energy entering a planar contraction, are
described in Parsheh et al. (2005) and Ullmar (1997). A
constant value of rotational diffusivity coefficient will be fit-
ted to the respective flow cases, and a scaling evaluation of
two different hypotheses, expressed in different time scales,
associated with turbulence, is carried out. The time scales
considered here are the Kolmogorov and the Eulerian inte-
gral time scales.
2. Formulation

For a general description of the fibre orientation state,
we used the probability density distribution function for
fibre orientation, i.e. Wðx1; x2;/1; h1Þ. The evolution of W
along the planar contraction is described by the steady-
state Fokker–Planck equation, e.g. Advani and Tucker
(1987) and Eq. (1):
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This requires the simultaneous consideration of the azi-
muthal angle, /1, and the polar orientation angle, h1, cf.
Fig. 1. The cartesian velocity components of the average
flow field are U 1 and U 2. Rotational velocities due to the
mean velocity gradients of the fibre orientational angles,
/1 and h1, in (1) are denoted _/1 and _h1, respectively. An
example of a model for the rotational diffusivity, Dr, for
laminar flow due to hydrodynamic interactions between fi-
bres can be found in the work by Folgar and Tucker (1984)
and Koch (1995). The rotational diffusivity, Dr, in (1) of the
present work is rather due to the turbulent fluctuations of
the flow field. However, in our simulation we considered a
dilute fibre suspension which excludes any fibre–fibre
hydrodynamic interaction. This is also the flow and con-
centration regime considered in the experimental works
by Parsheh et al. (2005, 2006) and Ullmar (1997, 1998),
to which our simulations are compared. The rotational dif-
fusivity, Dr, is kept constant throughout the flow field at a
value related to the fibre length and the overall turbulent
properties of the flow, as will be described later in detail.

For the rotational velocities induced by the average flow
field, we use the fundamental study of a single undisturbed
fibre by Jeffery (1922) which is here applied in the limit of
an infinitely thin fibre, i.e. large aspect ratio. Equations for
the rotational velocities for the 3D orientation vector can
also be found in Goldsmith and Mason (1967), and for a
large aspect ratio of the fibre these can be reduced to
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Eqs. (2) and (3) are expressed in mean velocity gradients
applied on the center of the fibre. We consider the evolu-
tion of W along the centreline of the contraction, i.e.
x2 ¼ 0, where the mean velocity field is taken from inviscid
theory and is given by U 1 ¼ U 1;0=ð1� x1=r0Þ, U 2 ¼ 0,
where r0 is the distance from the inlet to the apex of the
contraction. Eq. (1) with (2) and (3), using incompressibil-
ity and symmetry conditions for the velocity gradients at
the centreline, then gives
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where non-dimensional parameters U ¼ U 1=U 0, x ¼ x1=r0

and Per;0 ¼ U 0=ðr0DrÞ are used. Due to the symmetry of
W with respect to /1 ¼ 0 (and /1 ¼ p), we consider only
the interval /1 2 ½0; p�. The boundary conditions at
/1 ¼ 0; p are then oW

o/1
¼ 0. For numerical implementation,

we also note that this implies zero flux conditions in the
/1-direction:
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since _/ ¼ 0 at /1 ¼ 0; p. For numerical implementation of
the flux in the h1-direction at h1 ¼ 0; p we note that from
the definition
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i.e. the flux is zero as long as oW
oh1

is finite. In the present for-
mulation, the solution yields the result oW

oh1
¼ 0 at h1 ¼ 0; p.1
1 This can also be derived from the consideration of the symmetry with
respect to h1 ¼ p=2, which was, however, not made use of explicitly in the
formulation of the boundary condition. Then for any given orientation
ð/�1; h

�
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ð/�1; p� h�1Þ, where Wh1
denotes the

partial derivative of W with respect to h1. Also, since the fibre is assumed
symmetrical with respect to its centre of mass, we must have
Wð/�1;p� h�1Þ ¼ Wð/�1 þ p; h�1Þ. Thus, �Wh1

ð/�1;p� h�1Þ ¼ Wh1
ð/�1þ p; h�1Þ.

The symmetry condition then yields Wh1
ð/�1; h�1Þ ¼ Wh1

ð/�1 þ p; h�1Þ. On the
other hand, due to continuity of the derivative of W along a meridian
across the poles at h�1 ¼ 0;p we must have Wh1

ð/�1; h�1 ¼ 0; pÞ ¼
�Wh1

ð/�1 þ p; h�1 ¼ 0;pÞ, which together with the symmetry condition
applied at the poles yield Wh1

ð/�1; h�1 ¼ 0;pÞ ¼ 0.
At the inlet of the contraction, we assume a homogeneous
fibre orientation distribution
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; ð7Þ

where at all positionsZ p
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The diffusivity coefficient, Dr, is assumed constant through-
out the contraction. We show that our simulation of the
evolution of the fibre orientation distribution can repro-
duce an anisotropy in fair agreement with the chosen
experiments from the literature by adjusting the value of
Dr. The measure of anisotropy used is the first component
of the fourth-order planar orientation tensor, cf. Parsheh
et al. (2005), in the ðx1; x3Þ-plane
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where �p ¼ ðcos /1; sin /1Þ, and Wp is the planar orientation
distribution
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which according to (8) satisfies
R p

0
Wp d/1 ¼ 1. One may

note here that our formulation is more general than that
considered by Parsheh et al. (2005) since we do not assume
the distribution function to be planar but use the full 3D
distribution function W. The planar distribution Wp is ob-
tained from the projection of the fibres in the ðx1; x3Þ-plane.
The values of Dr used in the simulation that give the best fit
of a1111 for each experiment chosen for comparison are
determined. We then seek a relation between the overall
turbulent level of each experiment and Dr. We have chosen
the state at the inlet of the contraction to characterize the
overall turbulent levels. The motivation for this, and the
choice of a constant diffusivity, Dr, is twofolded. First, dif-
ferences in turbulence levels between the individual cases
are generally higher than the differences in turbulence level
between the inlet and the outlet for each case. Secondly, the
rotational Peclet-number, Per ¼ oU1

ox1
=Dr, increases rapidly

along the contraction, see Fig. 2, whereby the diffusivity
has its major role at the beginning of the contraction.
The properties that we need to identify at the inlet for each
case are streamwise mean velocity, U 1;0, turbulent kinetic
energy, k0, and turbulent dissipation rate, �0. The experi-
ments considered are two cases from Parsheh et al.
(2005), i.e. Cases 1 and 2, and two cases described in a
study by Ullmar (1997), i.e. Cases 3 and 4. The first study,
Cases 1 and 2, describes a mesh-generated turbulence that
changes by means of increasing the flow rate. In Cases 3
and 4, the turbulence is generated by a bundle of pipes,
i.e. 3 � 7 pipes, with a round-to-round sudden pipe expan-
sion followed by a round-to-square step, leading to a
square shaped outlet, entering a short straight channel be-
fore the contraction. This will generate much higher levels
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value as a function of the normalized x1 coordinate with r0.
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of turbulence than that in Cases 1 and 2. For Case 1, the
level of kinetic energy of turbulence, k0, is estimated with
an approximation of decaying isotropic turbulence, from
a uniform grid in a straight channel, given by Roach
(1987) together with the experimental data provided by
Parsheh et al. (2005) to be

k0 ¼
3

2
U 2

0 1:2
l
d

� ��5
7

 !2

; ð11Þ

where 1.2 is a constant based on the grid geometry and has
been fitted to the experimental result for Case 1, l is the
downstream position from the grid, d is the grid bar width
of the mesh, and U 0 is the streamwise velocity upstream of
the contraction. Turbulence entering into a planar contrac-
tion will continue to decay as isotropic turbulence, accord-
ing to the decaying law, for some distance, before any
anisotropic effects become significant, e.g. Brown et al.
(2006), Parsheh et al. (2005, 2006) and Roach (1987). Addi-
tionally, the results by Brown et al. (2006) showed that the
anisotropy of the flow reaches a peak value at
2:5 < C < 3:5, whereafter it returns almost completely to
an isotropic state inside the latter part of the contraction.
For Case 2, it was assumed that the same decaying law
specified in (11) was valid. Based on the equation for the
mean kinetic energy of turbulence, and the assumption of
decaying isotropic turbulence, i.e. there is no production
of turbulence and the mean flow is constant, the dissipation
rate of turbulent energy at the inlet of the contraction, �0,
can be estimated, for Case 1 and Case 2, together with
(11) from

U
ok0
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¼ ��0: ð12Þ

The estimation of turbulence levels for Cases 3 and 4, i.e.
Ullmar (1997, 1998), has been made with CFD modelling.
Mean quantities of k and � from simulations just before the
contraction were used for the evaluation of the inlet value.
The Reynolds number based on the mean flow is defined as
Re ¼ U 0h0=m.

To describe the relations between Dr and k and �, we fol-
low the notation by S&K who express Dr in terms of the
fibre orientation auto-correlation integral time, T p as
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where T p is expressed in terms of two different scalings
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and the non-dimensional fibre lengths Lf =g, Lf=K scaled
with the Kolmogorov length scale

g ¼ ðm3=�Þ1=4 ð18Þ

and the turbulent Eulerian integral length scale, K, respec-
tively. We will assume here that K is of the same order of
magnitude as the large energy bearing eddies in turbulence,
given by

K � L � k
3
2
0

�0

: ð19Þ
3. Analysis

The Fokker–Planck equation, (4), is solved by the multi-
physics program COMSOL Multiphysics ver.3.3, which is a
FEM-based solver. Mesh independent solutions are
achieved for all the cases solved in this study. Since there
is a lack of measured turbulent quantities for Cases 3 and
4, i.e. Ullmar (1997, 1998), the levels of turbulence kinetic
energy, k0, and dissipation rate of kinetic energy, �0, are esti-
mated by CFD modelling. The axisymmetric sudden pipe
expansion, called the turbulence generator, and a short
straight channel section, just before the contraction, were
modeled with the omega–Reynolds Stress Turbulence
Model, provided by the ANSYS CFX v11 code. Due to sym-
metrical reasons, a quarter of each of four the neighboring
pipes, i.e. 2 � 2 pipes, were considered in the CFD-model.

Based on the values of Dr determined for the different
flow cases and the specific sets of the overall turbulent



898 M. Hyensjö, A. Dahlkild / International Journal of Multiphase Flow 34 (2008) 894–903
properties of these flow cases, we seek approximations to
the functions, fg and fK, in certain limits of the parameters.
To do this, we let ourselves be guided by the DNS results
from S&K describing the fibre orientation auto-correlation
time, T p, as a function of fibre length, shown in Fig. 3 in
two different non-dimensional units. In Fig. 3a the Kol-
mogorov time and length scales are used for non-dimen-
sionalization, whereas in Fig. 3b Eulerian integral time
and length scales are used. S&K draw the conclusion that
neither Kolmogorov scales or Eulerian integral scales col-
lapse the data independently of Reynolds number, Rek.
They specifically note that whereas the Eulerian integral
time, sK1

, actually is similar in magnitude to T p, the Kol-
mogorov time scale, sg, is substantially smaller. Fig. 3b also
shows the quadratic asymptotes for short fibres fitted by
S&K according to

T p

sK1

¼ bp;0 þ bp;2
Lf

K1

� �2

: ð20Þ

The coefficients bp;0 and bp;2 are indeed dependent on Rek,
where the trend is that bp;0 decreases and bp;2 increases with
Rek. Based on the 3D energy spectrum of the DNS gener-
ated homogeneous isotropic turbulent flow by S&K, the
Eulerian integral length scale, K1, in (20) and Fig. 3b, is de-
fined as the two-point velocity correlation in the longitudi-
nal direction, i.e. x1-direction (note that in the present
work, the Eulerian integral length scale is defined by
(19)). S&K also give the Rek-dependent quadratic asymp-
totes for short fibres in the Kolmogorov scaling, but these
will not be relevant to our parameter regime. In all, S&K
conclude that their expectation, that T p=sg is a function,
fg, only of Lf=g, would be possible only at very high Rek

and with large values of fg. Guided by the data shown in
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Fig. 3a and b, we present two hypotheses for T p. The first
hypothesis is based on the quadratic asymptotes for short
fibres using the Eulerian integral scaling. In a first approx-
imation, for very small values of Lf=K1, the second term of
(20) can be neglected, which according to Fig. 3b seems
reasonable at least for, say, Lf =K1 < 0:3. The upper limit
in Lf =K1 for this approximation is lower for larger Rek,
but the data of our investigation also follow this trend.
The remaining coefficient, bp;0, is still dependent of Rek

and we make the assumption

f I
K ¼

1

ða1 þ b1RekÞ
; ð21Þ

where a1 and b1 are constants independent of Lf=K. The
second hypothesis for T p considers long fibres in terms of
the Kolmogorov scaling and in the limit of large Rek. From
Fig. 3a, we observe that for Lf =g > 25, and data of Rey-
nolds numbers in the interval 30 < Rek < 50, the depen-
dence on Rek is much weaker and the data collapse
approximately on a straight line, as indicated. Our simula-
tions are in the range of Rek ¼ 50� 250. Thus, we assume
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where a2 and b2 are constants independent of Rek. As com-
mented by S&K, fg may be expected to be independent of
Rek � 1 as the largest velocity gradients occur in Kol-
mogorov eddies, although their DNS results do indicate
an overall Rek-dependence. (One may note that such linear
dependence on fibre length, Lf =g > 20, was obtained by
S&K for the zero-crossing time of the fibre rotation-rate
auto-correlation function normalised with the Kolmogorov
time scale, a correlation function that was also found over-
all independent of Rek.) As a complementary part of the
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second hypothesis for smaller values of Lf=g, one may con-
sider a quadratic asymptote that joins smoothly with (22)
at Lf =g ¼ 25. This is also indicated in Fig. 3a, and would
represent the limit for large Rek. However, the data we
use here do not cover the region Lf=g < 25. In the follow-
ing, we also express the first hypothesis in terms of Kol-
mogorov scaling and the second hypothesis in terms of
Eulerian integral scaling. Thus from the first hypothesis
we have

T p

sg
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sg
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The Taylor micro-scale Reynolds number, Rek, can be
rewritten as
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(24) can then be expressed in Rek as
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Note here that as Rek !1 the ratio T I
p=sg is constant,

which is in accordance with the original expectation of
S&K, although only valid for Lf=K	 1. From the second
hypothesis, we get
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Furthermore, the scale ratio between the larger energy
bearing eddies, L ¼ K, and the Kolmogorov scale, g, in
(28), can also be expressed in Rek. With (18), (19) and
(25), we have
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m

� �1=4

¼ kffiffiffiffiffi
m�
p
� �3=2

¼
ffiffiffiffiffi
3

20

r
Rek

 !3=2

: ð29Þ
Now with the inverse of (26), and (29), inserted in (28)
yields

T p

sK

II

¼ 2
ffiffiffiffiffi
10
p

3

1
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a2 þ b2

ffiffiffiffiffi
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Rek
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1
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0
@
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A: ð30Þ

Naturally, this function is also linear in the fibre length
which is definitely not the trend for smaller values of
Lf=K according to Fig. 3b. However, it is overall dependent
on Rek in agreement with the data of the same figure. A
summary of the hypotheses is given in Table 1, where the
parameters a1, b1, a2 and b2 are determined by regression
analysis of the results for the diffusivity coefficients,
Dr ¼ 1

2T p
.

4. Results

In Table 2, all the flow cases and their turbulence levels
and structures, i.e. scales, entering the contraction and
some simulation results, are summarized. For Cases 1
and 2, the respective turbulent kinetic energy, k0, was
expressed from the measured quantity, urms, by assuming
isotropic turbulence, i.e. k ¼ 3=2u2

rms. The experimental
measurement of the longitudinal integral length scale for
Case 1, by Parsheh et al. (2005), is reported to vary between
2Lf at the inlet to 10Lf at C = 8, with Lf as the fibre length.
Our estimation, (19), taken from the energy bearing eddies,
L, is about 3Lf –10Lf at the inlet depending on the
Reynolds number. Compared with the integral length
scale obtained by S&K, we find from (29) that
ðK=gÞRe�3=2

k ¼ 0:24, which is a factor of about three times
larger than their value for the larger Reynolds numbers.
A constant value of Dr was determined by optimizing the
agreement of the solution of (4) with the experimental data
provided by Parsheh et al. (2005), cf. Fig. 4. The orienta-
tion state, as shown in Fig. 4, is illustrated by the fourth
moment of the streamwise orientation tensor, a1111 given
in (9), and is plotted against the contraction ratio, C,
defined as the ratio of the local streamwise mean velocity
to the inlet streamwise mean velocity, U 1=U 1;0. A least
square optimization method was carried out on all the
experimental data along the contraction giving the value
of the rotational dispersion coefficient, Dr. Starting from
a homogeneous inlet condition of the fibre orientation dis-
tribution, Case 2 will have a larger value of Dr than Case 1
which correlates with the higher turbulence level entering
the contraction, cf. Table 2 and Parsheh et al. (2005).
Higher levels of turbulence will even out the fibre orienta-



Table 2
Summary of the flow properties at the contraction inlet for the different flow cases

Case 1 Case 2 Case 3 Case 4

Dr
1
s

	 

0.38 0.99 1.14 1.98

Per;0 ½�� 1.9 1.46 0.58 0.5

�0
m2

s3

h i
3:050� 10�3 2:440� 10�2 3:315� 10�2 1:101� 10�1

k0
m2

s2

h i
1:034� 10�3 4:138� 10�3 1:041� 10�2 2:310� 10�2

U1;0
m
s

	 

0.4375 0.875 0.344 0.516

urms
m
s

	 

2:626� 10�2 5:252� 10�2 8:331� 10�2 1:241� 10�1

T 0 [%] 6.0 6.0 24.2 24.0
Lf [mm] 3:2 3:2 3:0 3:0
L [mm] 1:091� 101 1:091� 101 3:204� 101 3:188� 101

kt [mm] 1.741 1.230 1.674 1.368
g [mm] 0.124 0.073 0.068 0.050
Re ½�� 85� 103 170� 103 96� 103 144� 103

Rek ½�� 51.2 72.4 156.3 190.2
Lf =g ½�� 25.8 43.8 44.1 59.5
Lf =ðK ¼ LÞ ½�� 0.29 0.29 0.1 0.1
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Sim: Case1 (Parsheh et al. 2005)
Sim: Case1, Dr=0.38

Stokes Flow (Homogeneous inlet)
Exp: Case2 (Parsheh et al. 2005)
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Fig. 4. Development of the fourth moment of the orientation vector along the contraction, experimentally and simulated results by Parsheh et al. (2005),
together with results from the present simulation using a fit of a constant value of Dr for the respective flow case.
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tion probability function more and decrease the anisot-
ropy, i.e. a1111. Also in Fig. 4, the Stokes flow case is
included, i.e. Dr is equal to zero. Fig. 4 also shows the sim-
ulated results by Parsheh et al. (2005) for Cases 1 and 2.
There are three main differences between our simulation
and that of Parsheh et al. (2005). Firstly, the rotational dif-
fusivity in their work is not constant as in ours, but decays
exponentially with the contraction ratio at a rate deter-
mined by a least-square fit to their experimental data of
a1111. Secondly, their initial condition for the probability
density distribution function is not a homogeneous one,
as here. Instead, the measured planar distribution function
at contraction ratio C ¼ 1:1 is considered as an initial con-
dition, whereby the simulated value of a1111 automatically
agrees with the measured one at C = 1.1. Finally, their sim-
ulations assume a planar distribution, i.e. all fibres are
aligned in the azimuthal plane, i.e. h1 ¼ p=2. In our simu-
lation, we consider the full three dimensional distribution,
in which orientations are then consistently projected to get
a1111. Overall, our fitted simulations agree reasonably well
with the experimental data of Parsheh et al. (2005), despite
the simplified initial condition and the use of a constant
rotational diffusivity. The experimental results by Ullmar
(1997) provided only outlet profiles of the fibre orientation
distribution in the contraction. Fig. 5 shows the planar ori-
entation distribution functions of the experimental Cases 3
and 4 as compared to those obtained from the simulation
that gives the same value of a1111 at the outlet centreline.
The specific values of Dr required are summarized in Table
2. Also here the trend is that the higher the turbulence level
entering the contraction, the higher the constant value of
Dr is required.
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To test the first hypothesis, discussed in the previous
paragraph, we plot 2DrsK ¼ sK=T p versus Rek for the simu-
lation results shown in Fig. 6. The corresponding linear
regression line, according to (21), with the parameters,
a1 ¼ 0:047 and b1 ¼ 0:0052, is also shown. The good fit
illustrates that for the limits of small Lf =K, Dr scales in
magnitude with the inverse of the Eulerian integral time
scale and DrsK increases with Rek. This trend is also
obtained by S&K in their simulations, cf. Fig. 3b. Their
values of 1=bp;0, cf Eq. (20), are also shown in Fig. 6,
including a corresponding linear regression line to their
data for the larger Reynolds numbers. Also in Fig. 6, a
special case of a linear regression line drawn through the
origin is shown. This implies a constant value of T I
p=sg

independent of Rek, cf. (27). Furthermore, as can be seen
from (27), T I

p=sg increases with increasing Rek and levels
out for larger values. In summary, the first hypothesis
described, (21), is not able to catch any variations of Dr

with different fibre length ratios.
Considering the values of Lf=g in the Cases 1–4 studied,

we have 25 K Lf=gK 60 and 50 < Rek < 200. This is well
above the lower limits of Lf=g and Rek when T p=sg may
be regarded as independent of Rek and linear in Lf=g
according to the simulations by S&K, cf. Fig. 3a. Consid-
ering the second hypothesis in (22), the simulated results
with the corresponding linear regression line is illustrated
in Fig. 7. The parameters determined are a2 ¼ 68:2 and
b2 ¼ 0:352, which gives a good fit. The relative slope,
1
fg

d
dðLf =gÞ ðfgÞ, at Lf=g ¼ 25 is of the same order of magnitude

as that found in the results of S&K, although the values of
T II

p =sg are a factor of 10 times larger. The complementary
part of the second hypothesis for Lf=g < 25 and large Rek

is also given in Fig. 7 as the quadratic asymptote that joins
smoothly with (22) at Lf=g ¼ 25. In Fig. 8, the second
hypothesis is shown in terms of the integral scaling,
T II

p =sK, according to Eq. (30). The same qualitative behav-
iour for curves of different Rek as that shown in Fig. 3b is
observed. Thus, for the lower values of Lf =K, the trend is
that higher Rek leads to a lower value of fg, and vice versa
for higher values of Lf=K. In fact, evaluating the inverse of
(30) at Lf =K ¼ 0 gives a linear variation with Rek at a slope
of 0.007, which is almost identical to that of bp;0 as shown
in Fig. 6 obtained in S&K. For small values of Lf=K the
complementary part of the second hypothesis, also indi-
cated in Fig. 8, can be used to get results in a qualitative
agreement with the quadratic asymptotic behaviour as
shown in Fig. 3b. Note that the difference in the definition
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of the integral length scale compared to that of S&K is
compensated for by using an interval of Lf=K between 0
and 1 shown in Fig. 8, rather than Lf =K1 from 0 to 3 as
shown in Fig. 3b.

5. Conclusions

The Fokker–Plank equation for the orientation distribu-
tion function of slender fibres was solved for turbulent flow
along the centreline of a planar contraction with mean
velocities from inviscid theory, and a constant rotational
diffusivity coefficient, Dr. It was demonstrated that the con-
stant value of the rotational diffusivity coefficient could be
adjusted to account for the variation of orientation anisot-
ropy at various levels of turbulence entering the contrac-
tion in four chosen experimental cases presented in the
literature. We also presented two different hypotheses for
the variation of the non-dimensional rotational diffusivity
with non-dimensional fibre length, Lf =g, and Reynolds
number based on the Taylor micro-scale of the turbulence,
Rek. In terms of the Kolmogorov time and length scales, sg

and g, and the integral scales, sK and K, the inverse of the
adjusted non-dimensional diffusivities, fg ¼ 1=ð2DrsgÞ and
fK ¼ 1=ð2DrsKÞ, were evaluated for the different flow cases
investigated. We found that assuming fg independent of
Rek, our data could be fitted with a weak linear dependence
on the non-dimensional fibre length, Lf=g, at a relative
slope of about 0.005, which is of the same order of magni-
tude as that of the DNS in Shin and Koch (2005) in the
limit of Lf=g� 1. The other hypothesis neglects the effect
of non-dimensional fibre length and attributes the rela-
tively slight changes of fg entirely to the Reynolds number,
Rek. In this case we found that, in terms of the integral scal-
ing, our data of 1=fK could be fitted with a linear depen-
dence on Rek at a slope of about 0.005–0.006, which is of
the same order of magnitude as that obtained in Shin
and Koch (2005) in the limit of Lf =K	 1. However, we
believe that the hypothesis, which accounts for the effects
of non-dimensional fibre length and is independent of Rek

using the Kolmogorov scales for non-dimensionalization,
is at an advantage, since this hypothesis in terms of the
integral scaling also accounts for the effects of Reynolds
number, which in turn are in a qualitative agreement with
that of Shin and Koch (2005) also in the limit Lf =K	 1.
To generalize our results, we will in future work determine
the non-dimensional functions for the rotational diffusivity
according to the mentioned hypotheses in simulations of
the same cases where the local scales of turbulence in the
flow field from a CFD-simulation are used rather than
the scales at the inlet of the contraction. The rotational dif-
fusivity will then not be constant, but will change according
to the proposed functions DI

r ¼ ða1 þ b1RekÞð2sKÞ�1 or
DII

r ¼ ð2sgða2 þ b2Lf =gÞÞ�1, where only the fibre length,
Lf , and the empirically determined parameters a1, b1 and
a2, b2 are constants throughout the flow field. Then, as
the constants have been fixed at values presumably not
deviating largely from what was obtained here, we will be
ready to test the models for the rotational diffusivity
together with CFD-simulations in new flow cases for which
the parameters were not directly adjusted for optimal fit of
the anisotropy.
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